Evolving Problems to Learn about Particle Swarm Optimisers and other Search Algorithms

نویسندگان

  • W. B. Langdon
  • Riccardo Poli
چکیده

We use evolutionary computation (EC) to automatically find problems which demonstrate the strength and weaknesses of modern search heuristics. In particular we analyse Particle Swarm Optimization (PSO), Differential Evolution (DE) and Covariance Matrix Adaptation–Evolution Strategy (CMA-ES). Each evolutionary algorithms is contrasted with the others and with a robust non-stochastic gradient follower (i.e. a hill climber) based on Newton-Raphson. The evolved benchmark problems yield insights into the operation of PSOs, illustrate benefits and drawbacks of different population sizes, velocity limits and constriction (friction) coefficients. The fitness landscapes made by genetic programming (GP) reveal new swarm phenomena, such as deception, thereby explaining how they work and allowing us to devise better extended particle swarm systems. The method could be applied to any type of optimiser.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES

Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...

متن کامل

Extending Particle Swarm Optimisation via Genetic Programming

Particle Swarm Optimisers (PSOs) search using a set of interacting particles flying over the fitness landscape. These are typically controlled by forces that encourage each particle to fly back both towards the best point sampled by it and towards the swarm’s best. Here we explore the possibility of evolving optimal force generating equations to control the particles in a PSO using genetic prog...

متن کامل

Dynamics and Stability of the Sampling Distribution of Particle Swarm Optimisers via Moment Analysis

For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only way to beat the limitations highlighted by the no-free lunch theory. Yet, the sampling distributio...

متن کامل

Particle Swarm based Data Mining Algorithms for classification tasks

Particle Swarm Optimisers are inherently distributed algorithms where the solution for a problem emerges from the interactions between many simple individual agents called particles. This article proposes the use of the Particle Swarm Optimiser as a new tool for Data Mining. In the first phase of our research, three different Particle Swarm Data Mining Algorithms were implemented and tested aga...

متن کامل

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005